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INTRODUCTION 

.1244 

The prostaglandin system is implicated in physiological and pathological 
responses of most tissues of the body. The background and breadth of this 
subject are documented in many reviews and recent symposia (15,25,27, 
28,51, 108, 112, 114, 135). This review on the eNS covers advances in the 
past three years and concerns specifically the possible involvement of the 
prostaglandin system in the regulation of physiological and pathophysiolog­
ical processes. 

A wide range of stimuli (hormones, enzymes, trauma, infiammation, 
pyrogens, immune and allergic reactions, etc) activate a plasma membrane 
enzyme sequence in mammalian cells that leads to the rapid de novo synthe­
sis of several prostaglandin types and in certain tissues thromboxanes as 
well. The biologically active compounds do not accumulate intracellularly 
and, therefore, under physiological conditions they occur only in trace 
amounts in tissues and most body fluids. Following formation, action and 
release, the compounds are rapidly converted by several enzymatic se­
quences to less active or inactive metabolites, which appear in blood and 
urine. Arachidonic acid, the predominant precursor unsaturated fatty acid 
in mammalian cells, becomes oxygenated to the prostaglandin endoperox-
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ides and their products. Arachidonic acid must be released from a complex 
lipid precursor by deacylases before it can be transformed. The biosynthesis 
of prostaglandins and thromboxanes by central nervous tissue and factors 
that affect it have been reviewed recently (42, 135, 136). A new finding is 
that PGD2 is formed in excess of PGF2a by cerebral tissues of the rat (1). 

CEREBROSPINAL FLUID 

The existence of prostaglandin-like material in cerebrospinal fluid (CSF) of 
experimental animals has been recognized for some time (25, 135). Recent 
studies show CSF levels of PGF2a in human subjects without neurological 
disease usually to be below 100 pg ml-' (range 3�I40 pg ml-') in cell-free 
fluid (55, 73, 137). Either PG� is not detectable or it is present at the same 
low levels as PGF2a. Thromboxane B2 is also a normal constituent (range 
8�3oo pg ml-I), at least in the cat (p. Coceani, unpublished results). In 
contrast to most other tissues (89, 135), the brain has very low capacity 
either to take up or metabolize PGF2o. and PG� to the I5-keto and 15-
keto-13,I4-dihydro metabolites. Consequently, prostaglandins normally 
produced endogenously are primarily cleared into the general circulation 
through choroidal and extra-choroidal transport mechanisms (16, 55). 

Marked increases in CSF PGF2a levels are found in patients with epi­
lepsy, meningoencephalitis, hydrocephalus, and after surgical trauma; but 
levels are variable even in the same patient. Likewise, patients with vascular 
lesions, subarachnoid hemorrhage, and stroke also show significant albeit 
variable (200-3000 pg ml-I) increases in PGF2o. and PG� levels (22, 55, 
74, 137). Prostaglandins in the CSF may affect brain function directly or 
through local changes in the circulation. 

CEREBRAL CIRCULATION 

It is now well accepted that prostaglandins and thromboxanes contribute 
to vascular homeostasis through a direct action on smooth muscle in the 
vessel wall and, possibly, a modulation of muscle responses to neural and 
hormonal stimuli (27, 78, 125). The evidence supporting this concept is as 
follows: (a) Vessels are endowed with an enzyme system for the synthesis 
of primary prostaglandins and PGI2, the latter being the predominant 
prostaglandin. With one exception (umbilical artery), all vessels lack the 
thromboxane A2 synthetic enzyme. (b) Prostaglandins and thromboxane 
A2 exert potent and varied actions on vessels. While the action of the pri­
mary prostaglandins changes depending on the species and the vascular 
bed, PGIz and thromboxane Az are relaxant and constrictor agents, respec­
tively, at all sites. Prostaglandin endoperoxides are also vasoactive, and 
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their action may be direct or mediated by the intramural formation of 
primary prostaglandins and POI2• (c) Indomethacin and other nonsteroidal 
anti-inflammatory drugs constrict or dilate vessels in vitro and in vivo. 

Although these findings implicate intramural prostaglandins in the con­
trol of vascular tone, extramural prostaglandins may also be important, 

particularly under pathological conditions. Thromboxane All which is re­
leased in great amounts from aggregating platelets, may gain access to 
muscle cells in the vessel wall and cause constriction. Furthermore, prosta­
glandins and thromboxane A2 formed within the parenchyma of organs 
may act upon small resistance vessels. 

The above scheme may also apply to the cerebral circulation. All primary 
prostaglandins and PGI2 are formed in cerebral vessels (56, 133). Moreover, 
indomethacin reduces cerebral blood flow (99, 101), which implies that 
vessels are normally maintained in a relaxed state by a prostaglandin. The 
identity of the active compound is not known. However, evidence obtained 
in other vascular beds and the demonstration that PG� and PGF2� are 
both constrictors on cerebral vessels (100, 139) suggest that this compound 
is PGI2• Thromboxane Az, though not formed in cerebral vessels (56), is a 
potent constrictor (39). In fact, thromboxane A2 is the most potent vasocon­
strictor among agents acting On the cerebral circulation. 

According to current ideas, prostaglandins and allied compounds, be­
sides being involved in the normal control of cerebral blood flow, are also 
responsible for the hemodynamic changes occurring under certain patho­
logical conditions-in particular, cerebral vasospasm (132). For example, 
thromboxane Az, formed in damaged brain tissue or in aggregating plate­
lets, is considered a prime determinant of the vasospasm-complicating 
thromboembolism and subarachnoid hemorrhage (39, 131). Thromboxane 
Az action may be complemented by that of the prostaglandins and other 
vasoactive agents (5-hydroxytryptamine) (2). Indeed, thrombin stimulates 
PGFz� and PO� synthesis when injected intrathecally (54). Brain ischemia 
following head injury is possibly another prostaglandin-mediated process. 
Prostaglandins, specifically POEz, have also been implicated in the patho­
genesis of migraine (58, 131). PGEz, a constrictor of intracranial vessels, 
dilates extracranial vessels (100); therefore, it may be involved both in the 
prodromal phase and in the headache phase of the migraine attack. 

HYPOTHALAMIC FUNCTION 

Prostaglandins have been implicated in several hypothalamic mechanisms. 
Only temperature regulation, water balance, and food intake are considered 
here. Involvement of prostaglandins in hypothalamo-adenohypophyseal 
function has been discussed in recent reviews (53, 68, 70, 110). 
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Temperature Regulation 

The subject of hypothalamic transmitters involved in thermal homeostasis 
has been well covered recently (29,42, 62, 77, 99, 107, 128, 140) and does 
not require further elaboration here. It is sufficient to say that three com­
pounds, 5-hydroxytryptamine (5-HT), norepinephrine (NE), and acetyl­
choline (ACh) are generally assigned a key role in temperature regulation. 
According to most authors, body temperature is controlled through the 
opposing actions of 5-HT and NE on neurons in the anterior hypo­
thalamic/preoptic region (AH/POA). These amines have species-specific 
signs of action while maintaining reciprocal effects. ACh is considered a 
transmitter in the temperature-raising pathway in all species. The extracel­
lular concentration of ions within the posterior hypothalamus, and specifi­
cally the balance between sodium and calcium, may be an additional 
controlling factor. This ionic mechanism is thought to work in concert with 
the neurohumoral mechanism to detennine the "set-point" around which 
body temperature is regulated. 

The prostaglandins are a relatively recent addition to the field of ther­
moregulation. Interest in these compounds dates back to the early 1970s 
when it was found that POEt was a potent pyretic agent (84) and that 
antipyretics blocked prostaglandin synthesis in various organs including 
brain (48, 1 12). These two findings implicated a prostaglandin in the genesis 
of fever. Research in this area developed actively and led to the demonstra­
tion that: (0) POEz, a normal constituent of hypothalamic tissue (70), is as 
potent as PGEt in producing fever (45-47,57,65,76,86,93,94, 102, 106, 
121); moreover, both compounds are like pyrogens in that their action is 
not influenced by ambient temperature (57, 65, 121, 126); (b) PGEz acts 
upon neurons in the AH/POA that are also the main target for pyrogens 
(121, 126); (c) thenno-sensitive neurons in AH/POA respond in the same 
manner to PGEz and pyrogens (117); (d) PG� fever, unlike pyrogen fever, 
does not abate following administration of antipyretics (24, 79, 84, 85); and 
(e) pyrogen fever is associated with elevated levels in the CSF of a prosta­
glandin with the biological and immunological properties of PGE2 (34, 37, 
43, 44, 83, 95). Collectively, these findings indicate that PGEz is well suited 
for being the "central messenger" of fever and specifically of pyrogen fever 
(cf 62,80, 128). According to current knowledge, pyrogens from outside the 
body (exogenous pyrogen), and foremost among them bacterial endotoxin, 
as well as pathological conditions causing tissue inflammation and damage 
(e.g. infarction, malignancy) elicit the formation of a pyrogenic substance 
(endogenous pyrogen) in neutrophils and in cells of the reticuloendothelial 
system. The endogenous pyrogen, which is therefore a key intermediate in 
the sequence of events leading to fever, is then carried to the rostral region 
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of the hypothalamus by the circulation. Because the blood-brain barrier is 
seemingly impermeable to endogenous pyrogen (cf 80), and because prosta­
glandins are rapidly removed from the circulation (cf 124), one must assume 
that the vessel wall is the main site where pyrogen action is translated into 
increased prostaglandin synthesis. Consistent with this hypothesis is the 
notion that vessels, including cerebral vessels, are endowed with an active 
prostaglandin-generating system and that hypothalamic blood flow is in­
creased during pyrogen fever (109). The latter finding implies activation of 
prostaglandin synthesis in the vessel wall. Alternatively, PG� could be 
released from phagocytosing leucocytes sequestered in the capillary bed of 
AH/POA (128). Any pyrogen crossing the blood-brain barrier may stimu­
late prostaglandin synthesis in neural tissue (140). PGE2, whether formed 
in the tissue of the AH/POA or from the vessels, acts at appropriate sites 
in the thermoregulatory pathways to elevate the "set-point" for tempera­
ture regulation, thus causing fever. Once its action is completed, PGE2 is 
either inactivated enzymatically in situ or enters the extracellular fluid and 
CSF whence it is transported into the circulation. Interference with the 
latter mechanism results in enhancement of pyrogen effects (30). 

Although the experimental evidence implicating PG� in the pathogene­
sis of fever seems quite convincing, there have been reports contradicting 
the above scheme. In the monotreme, Tachyglossus aculeatus (Echidna), 
PGE1 and PG� are hypothermic agents, whereas endotoxin causes fever 
(12). Dissociation between pyrogen and PGE effects also occurs in the 
newborn lamb which, after appropriate sensitization, may develop fever in 
response to pyrogens but not in response to prostaglandins (103, 105). A 
similar phenomenon has been described in the adult animal following de­
struction of AH/POA (126). Potentially germane to these findings is the 
demonstration that prostaglandin antagonists block PG� but not pyrogen 
fever (31). 

Because pyrogen fever is susceptible to antipyretic treatment in the above 
experiments, a possible explanation for the inconsistencies could be that an 
arachidonic acid metabolite other than PG� contributes to, or is the main 
determinant of pyrogen effects. Consistent with this is the finding that fever 
following administration of arachidonic acid, while abolished by antipyret­
ics, is only partially blocked by prostaglandin antagonists (71). Theoreti­
cally, several compounds could have this role; however, available data limit 
the choice to two compounds, PGI2 and thromboxane A2, because prosta­
glandin endoperoxides and PGD2 are inactive (41, 59), and PGF2o. is a 
pyretic agent but only in high doses (41, 47, 86). While no information is 
available on the central action of PGI2, recent work showing that levels of 
thromboxane B2 in the cerebrospinal fluid rise during pyrogen fever (F. 
Coceani, unpublished results) suggests that thromboxane A2 might be the 
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hypothetical mediator. If so, it would not be a coincidence that intracranial 
bleeding, a condition in which AH/POA may be exposed to massive 
amounts of thromboxane A2 formed in aggregating platelets, is commonly 
associated with fever (113). 

Some findings suggest that fever may develop independently of the pros­
taglandin system. In the rabbit, salicylate at certain doses has little or no 
effect on the febrile response to pyrogen while it completely reverses the 
elevation in prostaglandin levels in the CSF (34). The question remains 
whether the dose of salicylate used was sufficient to block the synthesis of 

PG� or any other pyrogenic derivative of arachidonic acid in the AH/­
POA. However, more cogent evidence against the involvement of the pros­
taglandin system in fever is afforded by recent work in the chick (4, 5) in 
which it was shown that POEs are hyper- or hypothermic agents depending 
on the ambient temperature and that pyrogen fever is only marginally 
affected by indomethacin at a dose exceeding the therapeutic range (cf 48). 
Etiocholanolone fever in man, which is mediated by endogenous pyrogen 
(19), is also resistant to antipyretic treatment. 

Summing up, a large body of evidence supports the existence of a 

"PO� link" in the central action of endogenous pyrogen; but this prosta­
glandin may work in concert with another product, or more than one 
product, of arachidonic acid metabolism. Some forms of pyrogen fever, 
however, do not involve the prostaglandin system, and their central mecha­
nism remains obscure. 

Prostaglandins probably do not contribute to normal temperature regula­
tion. Antipyretics, whether given systemically (24, 66, 79) or injected into 
the anterior hypothalamus (6, 35), produce little or no hypothermia in the 
afebrile animal, nor do they reverse the hyperthermia following cold stress 
(32, 104). Furthermore, prostaglandin levels in the CSF remain unchanged 
during thermoregulatory adjustments to cold or hot environments (21,33). 
When present, hypothermic effects of antipyretics (cf 115) are ascribed to 
activation of the heat loss mechanism rather than to blockade of prostaglan­
din synthesis (79). Indeed, iontophoretically applied salicylate may stimu­
late warm-sensitive neurons in the AH/POA of the afebrile animal (13). 

The intimate mechanism of prostaglandin action in producing fever re­
mains a subject of speculation. It has been debated for some time (cf 28, 62) 
whether the prostaglandin and monoaminergic mechanisms are function­
ally interdependent, and this issue is far from being settled. In essence, two 
schemes have been proposed for linking the prostaglandins, specifically 

PGE1 and PG�, to the monoamines. According to one (7), monoamine 
actions leading to elevation in body temperature are mediated in part by a 
prostaglandin. In support of this concept is the finding that 5-HT stimulates 
the release ofPGEs from brain (64) and that epinephrine as well as 5-HT-
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induced hyperthermia are suppressed by antipyretics (7, 69, 82, 85). How­
ever, the validity of results with the antipyretics has been questioned (36, 
82), moreover, this hypothesis is not easily reconciled with the notion that 
monoamine effects (17,62), unlike prostaglandin effects (57,65, 121, 126), 
are affected by ambient temperature. Alternatively, it has been suggested on 
the basis of work with specific monoamine depletors and antagonists that 
monoamines are intermediates in the action of prostaglandins on tempera­
ture-raising mechanisms. Again, no firm conclusion can be drawn from 
these studies (cf 28) because positive results in one species [rabbit (20, 66, 
72)] contrast with inconsistent results in another [cat (82, 126)]. Further­
more, an explanation for the constancy of prostaglandin effects at different 
ambient temperatures must be provided before accepting this hypothesis. 
Equally controversial is the question of the role of cyclic nucleotides in PGE 
fever. While findings in the rabbit suggest that cyclic AMP is a central 
mediator of PGE fever (138), findings in the cat argue against this idea 
(81). 

Control of Body Water 
The homeostatic regulation of body water content is dependent on the 
concerted action of two brain mechanisms, namely, the function of a "thirst 
sensor" possibly located in the subfornical organ (40) and other circumven­
tricular organs (97), and the secretion of antidiuretic hormone (ADH). 
Both mechanisms are under the direct control of angiotensin II (40, 118) 
and may also be influenced by the ptostaglandins. Angiotensin, whether 
formed in situ or blood-borne, stimulates thirst and the formation of ADH. 
The latter action is exerted on the synthesis [supraoptic and paraventricular 
neurons (87)] and release [neurohypophysis (50, 63)] of the hormone. When 
injected into the common carotid artery or the cerebral ventricles, PGEI 
and PGEz mimic angiotensin in stimulating ADH release (75, 129). More­
over, these prostaglandins share with angiotensin a dual site of action (50, 
75, 129). Prostaglandin action on thirst mechanisms is a subject of contro­
versy. While it has been reported that PGEI and PGEz (but not PGF2a) 
antagonize the dipsogenic effect of angiotensin in the rat (40, 91), the same 
compounds have opposite effects in the goat (3, 75). This discrepancy is 
unlikely due to the dose of prostaglandin used (40, 75), because the sign of 
responses in the rat remained the same over a wide range of doses. Differ­
ences may reflect a genuine species variation, the significance of which is 
not known. 

Because low doses of PGEI and PGEz given by the ventricular route 
affect water balance without altering thermoregulatory neurons, responses 
are possibly indicative of a physiological process. This applies specifically 
to PGEz, which is present in brain. Future experiments employing blockers 
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of prostaglandin synthesis may confirm this point. Regardless of whether 
responses are physiological or pharmacological, the mechanism of prosta­
glandin action remains to be elucidated. Prostaglandins and angiotensin, 
which are both vasoactive agents, may act, or interact, on blood vessels 
supplying target neurons in the subfornical organ and the hypothalamus. 
Alternatively, their action may be exerted directly on neurons. Indeed, 
subfornical and supraoptic neurons respond to iontophoretically applied 
angiotensin (92, 96). It is still a question whether the same holds true with 
the prostaglandins. 

Regulation of Food Intake 
It is generally assumed that food intake is primarily controlled through the 
opposing action of two neuronal systems located in the hypothalamus: a 
lateral system signalling the urge for food ("feeding center"), and a ven­
tromedial system suppressing food intake ("satiety center") (60). Several 
neurohumoral agents, including the prostaglandins, have been implicated 
in the function of these neurons (cf 8). When given systemically, various 
prostaglandin types, including PGEt. PGEz, and PGF2a• inhibit food intake 
without overtly affecting behavior, body temperature, and water intake 
(116). PGE1 is also effective when injected into the hypothalamus; however, 
its site of action varies with the species. While in the rat responsive sites are 
located in the anterior commissure region and the lateral hypothalamus 
(11), in the ewe they are located in the anterior and medial hypothalamus 
(10). Furthermore, in the ewe PGE1 may also stimulate feeding (10). Pros­
taglandin effects occur in both food-deprived and satiated animals (38), 
which implies a central action for these compounds. 

Although these findings implicate the prostaglandins in the hypothalamic 
control of energy balance. some facts are inconsistent with this possibility. 
PG�, even though it suppresses feeding by the systemic route. has no effect 
on sites in the hypothalamus that are sensitive to PGE1 (10). Moreover. 
effective doses of PGE. by the intrahypothalamic route are in the micro­
gram range (10, 11. 127, 134). indicating a pharmacological rather than a 
physiological action. Another difficulty in accepting this idea arises from the 
fact that distribution of prostaglandin-sensitive sites in the hypothalamus 
is species-specific in spite of a seemingly constant organization of the neu­
ronal systems controlling feeding behavior (9). 

INTERACTION WITH CYCLIC NUCLEOTIDES 
AND NEUROTRANSMITTERS 

A large body of evidence suggests that cyclic nucleotides, and particularly 
adenosine 3'.5'-monophosphate (cyclic AMP). play a role in peripheral and 
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central synapses (52,67,90). In the CNS, cyclic AMP has been implicated 
in the mediation of postsynaptic effects of several neurotransmitters (52,67, 

90); however, evidence of such a role is strongest in the case of dopaminergic 
synapses on caudate neurons (120) and jl-adrenergic synapses between 
fibers originating in the locus coeruleus (LC) and cells in the cerebellum 
(purkinje cells) and the hippocampus (pyramidal cells) (18). Some data also 
suggest that guanosine 3',5'-monophosphate (cyclic GMP) is involved in the 
muscarinic actions of ACh (52, 88,90, 118). In fact, it has been proposed 
that cyclic AMP and cyclic GMP have a reciprocal function in the regula­
tion of neuronal activity (123). 

Prostaglandins may also interact with the cyclic nucleotides. Findings in 
cerebellar Purkinje cells afford a model of some of their possible functions 
in synaptic events. In brief, it is proposed (cf 28; 18, 90) that NE released 
from LC fibers impinging upon Purkinje cells triggers the postsynaptic 
formation of cyclic AMP, which in tum causes an appropriate change in 
membrane potential (i.e. hyperpolarization) through the phosphorylation of 
specific membrane proteins. The same model assumes that PG�, formed 
in response to NE or cyclic AMP action, modulates the synaptic process 
by inhibiting the synthesis of cyclic AMP. A similar sequence of events is 
thought to occur in other noradrenergic synapses (90), whereas prostaglan­
dins are assigned a stimulatory action on the cyclic AMP-generating sys­
tem in dopaminergic synapses (120). 

Although supported by findings in peripheral synapses (52), the above 
scheme has been challenged on various grounds. The idea that cyclic AMP 
is an essential intermediate in the postsynaptic action of NE has been 
questioned, and the points of contention are discussed in several reviews 
(28,90,98). Furthermore, different investigators (cf 23, 28, 122) have been 
unable to confirm at several sites in the CNS (cerebral cortex, hypothalamus 
and brain stem in mammals, and spinal cord in the frog) that E-type 
prostaglandins modify neuronal responses to the monoamines. Negative 
results with spinal neurons (23) are particularly significant because the 
amphibian CNS, unlike the mammalian eNS, is endowed with an active 
enzyme system for prostaglandin inactivation (26; F. Coceani, unpublished 
results) and would, therefore, seem to be a well-suited site for prostaglandin 
involvement in synaptic events. It is conceivable, however, that prostaglan­
dins may influence postsynaptic actions of the monoamines only in certain 
neuronal systems. Future work must take into consideration effects of the 
endoperoxides and thromboxanes, which may tum out to be more impor­
tant endogenous modulators of adenylate cyclase than the primary prosta­
glandins. 

A separate line of irivestigation suggests that PG� may modulate nora­
drenergic and dopaminergic transmission through inhibition of transmitter 
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release. However, this concept is based on work in peripheral synapses (61), 
whereas findings in the CNS are negative (130) or inconsistent (14, 111, 
119). 

CONCLUSIONS 

Facts 
Central nervous tissue has a complete system for the biosynthesis of prosta­
glandins and thromboxanes. The prostaglandin system is either directly 
or indirectly connected with neuronal activity, and its possible function is 
best documented in the case of hypothalamic homeostatic mechanisms. 
Cerebral blood vessels synthesize 'prostaglandins, which likely contribute 
to normal hemodynamics. There is compelling evidence that prostaglandins 
are formed at multiple sites in the CNS, both neural and non-neural, and 
interact in a varied manner in physiological and pathological situations. 

Outstanding Issues 
The activity and control of synthetic enzymes in neural and non-neural 
constituents of CNS; the identity of compounds active at various sites; the 
role of PGF2a. and PGD2, which are relatively inactive in spite of being 
formed in excess of PG�; the likelihood of prostaglandin-degrading en­
zymes being confined to certain neuronal types and the importance of such 
enzymes in the termination of prostaglandin effects; and the specific involve­
ment of prostaglandins in synaptic events are the outstanding issues. 

Prospectives 
Most of the outstanding issues will be hard to resolve because of limitations 
in assay methodology, the multitude of compounds to be assayed, the 
potential for new compounds or pathways in the metabolism of arachidonic 
acid, and difficulties in following the time-sequence of biosynthetic events 
in vivo. In spite of these problems, refinements in assay methods and the 
development of new and more selective blockers of arachidonic acid metab­
olism should afford a better knowledge of the functional organization of the 
prostaglandin system in the CNS. Advances in this field should also have 
an impact in the clinic-particularly in the management of neurological 
diseases in which the neural deficit follows a vascular insult. 
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