Sympathetic inhibition of IL-6, IFN-γ, and KC/CXCL1 and sympathetic stimulation of TGF-β in spleen of early arthritic mice

Rainer H. Straub *, Luise Rauch, Lena Rauh, Georg Pongratz

Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, 93042 Regensburg, Germany

A R T I C L E I N F O

Article info

Article history:
Received 20 April 2011
Received in revised form 21 June 2011
Accepted 3 July 2011
Available online

Keywords:
Sympathetic nervous system
Arthritis
Spleen
IL-6
TGF-β

A B S T R A C T

Objectives: The connection between sympathetic nerve fibers and immune cells in the spleen is known. In the context of arthritis, the functional meaning of the neuroimmune contact remains unclear. From immunization until disease outbreak, the sympathetic nervous system (SNS) has a proinflammatory influence which is converted into an anti-inflammatory influence after disease outbreak. This study investigated the influence of neuronally released neurotransmitters on IFN-γ, KC (CXCL1), IL-6, and TGF-β in spleen of mice shortly after outbreak of collagen type II-induced arthritis.

Methods: Spleens were removed when animals reached an arthritis score of 3 on a scale of 1–16 (approx. on day 32) in order to generate 0.35 mm-thick spleen slices. Spleen slices were transferred to superfusion microchambers in order to electrically induce release of sympathetic neurotransmitters. By means of this technique, the effect of physiologically released neurotransmitters was investigated on secretion of IFN-γ, KC, IL-6, and TGF-β.

Results: High amounts of IFN-γ, KC, IL-6, and TGF-β were released from superfused spleen, and electrical stimulation markedly inhibited IFN-γ, KC, and IL-6 release but pronouncedly stimulated TGF-β. The adrenergic influence via β-adrenergic pathways but without any effect on TGF-β.

Conclusion: At disease outbreak, electrically released endogenous neurotransmitters of the SNS inhibit IFN-γ, KC, and IL-6 but β-adrenergically stimulate TGF-β. This creates an anti-inflammatory milieu that might be responsible for the observed dual influence of the SNS on arthritis.

© 2011 Published by Elsevier Inc.

1. Introduction

In experimental arthritis models, the sympathetic nervous system (SNS) has a proinflammatory influence in the immunization phase and until outbreak of the symptomatic disease (Harle et al., 2005; Levine et al., 1985; Lorton et al., 1999). The proinflammatory support depends on several distinct mechanisms: (1) mobilization of immune cells from systemic stores (Dhabhar and McEwen, 2007), (2) support of plasma extravasation (Miao et al., 1996), (3) remodeling of tissue by inducing matrix metalloproteinases (Speidt et al., 2004; Spiegel et al., 2007), (4) stimulation of nociceptors via α2-adrenergic and prostaglandin cross-signaling (Chen et al., 1996; Gonzales et al., 1989), and (5) chemotactant activity of sympathetic neurotransmitters (Straub et al., 2000b). In contrast, in later symptomatic phases of arthritis, there might be some important anti-inflammatory influences via newly discovered catecholaminergic pathways (Capellino et al., 2010; Harle et al., 2005). Thus, there exists a transition phase between asymptomatic and later symptomatic phases of the disease but contrasting mechanisms still remain largely unexplained.

In order to shed some light on underlying mechanisms, we started to investigate the neuroimmune contact in the spleen of arthritic animals in the early phase of symptomatic collagen type II-induced arthritis (CIA) (Straub et al., 2008). It demonstrated β-adrenergic stimulation and α1-adrenergic inhibition of splenic interferon-γ (IFN-γ) secretion in the early phase of arthritis (Straub et al., 2008). In these experiments, a superfusion technique was developed to investigate the crosstalk between sympathetic nerve fibers and splenic immune cells (Straub, 2004; Straub et al., 2008). This technique opens an investigative window to scrutinize the local pro- or anti-inflammatory milieu in the spleen of arthritic mice at any desired time point during the course of the disease.

In the recent work, we were interested in further investigating the inflammatory milieu at an early stage of CIA that can affect later chronic stages (programming effect). The focus went from